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ABSTRACT 

The instability of a compressible flow past a wedge is investigated in the hypersonic 
limit. Particular attention is given to Tollmien-Schlichting waves governed by triple-deck 
theory though some discussion of inviscid modes is given. It is shown that the attached 
shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, 
the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. 
Indeed an infinite discrete spectrum of unstable waves is induced by the shock, but these 
modes are unstable over relatively small but high frequency ranges. The shock is shown to 
have little effect on the inviscid modes considered by previous authors and an asymptotic 
description of inviscid modes in the hypersonic limit is given. 

'This research was supported by the National Aeronautics and Space Administration under Contract No. 
NAS1-18107 while the authors were in residence at the Institute for Computer Applications in Science and 
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

Our concern is with the instability of hypersonic flow around a wedge of small an- 
gle. The work is motivated by recent interest in the development of hypersonic vehicles. 
We do not account for real gas effects even though some of the vehicles in question will 
certainly operate a t  speeds where such effects are important. Here we shall concentrate 
on Tollmien-Schlichting waves governed by triple-deck theory though some discussion of 
inviscid modes will be given. In a related calculation, the Gijrtler vortex instability mech- 
anism at hypersonic speeds is considered. There it is shown that centrifugal instabilities 
have their structure simplified considerably in the hypersonic limit. Here we show that 
this is not the case for Tollmien-Schlichting waves though inviscid modes have a relatively 
simple structure. In fact the logarithmically small layer a t  the edge of the boundary layer 
which controls inviscid modes is precisely the same layer where Gortler vortices become 
trapped a t  hypersonic speeds. It would therefore seem that the nonlinear interaction be- 
tween inviscid and centrifugal instabilities is an important problem to be considered in the 
hypersonic limit. 

Before giving more details of the problem to be considered here we shall give a brief 
review of some relevant previous calculations on compressible stability problems. For an 
excellent review of viscous and inviscid stability properties of compressible boundary lay- 
ers the reader is referred to the article by Mack (1987). Perhaps the main feature of 
compressible boundary layers of practical importance is that they are unstable to both 
inviscid and viscous instability waves. The inviscid modes have wavelengths comparable 
with the boundary layer thickness whilst the Tollmien-Schlichting waves have longer wave- 
lengths. Either the successive approximation procedure of Gaster (1974) or the formal 
asymptotic description based on triple-deck theory, as used for incompressible flows by 

Smith (1979a,b), can be extended to the compressible viscous instability problem in a rou- 
tine manner. Such a calculation was given by Gaponov (1981) using essentially Gaster’s 
approach whilst more recently Smith (1988) has applied triple-deck theory to the viscous 
modes of compressible boundary layers. A significant result of Smith (1988) is that when 
the free stream Mach number is increased there is critical size of Mach number in terms of 
the (large) Reynolds number at which the Tollmien-Schlichting downstream development 
takes place on a lengthscale comparable with that over which the basic state develops. At 
this stage the waves cannot be described by any quasi-parallel theory and the evolution 
can only be described by numerical integration of the governing linear partial differential 
equations. This is precisely the situation in the incompressible Gortler stability problem, 
see Hall (1983); perversely in the hypersonic limit the most significant Gortler vortices lose 
this property and become only weakly dependent on nonparallel effects. A question of some 

1 



importance raised by Smith’s work is whether the failure of the quasi-parallel approach at 
high Mach numbers means that many of the parallel flow calculations in this regime at  
finite Reynolds numbers are in error. Because Smith’s prediction is based on a double high 
Reynolds number and Mach number limit, the regime at  which this failure occurs must be 
identified by numerical integration of the governing linear partial differential equations. 

The inviscid modes of instability of a compressible boundary layer have been well- 
documented by Mack (1987). In fact, there can be unstable two- and three-dimensional 
modes and neutral modes associated with a generalized inflection point and non-inflectional 
neutral modes. At Mach numbers above three it is the inviscid modes which have the high- 
est growth rates and therefore presumably dominate the transition problem in compressible 
boundary layers. However, previous calculations for viscous and inviscid modes have taken 
little account of the presence of shocks in the flow field (but see Petrov 1984), though at  
high Mach numbers there is no question that they play an important role in determining 
the basic state. A primary aim of the present calculation is to gain some insight into 
the role of shock waves in the formation of viscous and inviscid modes in a compressible 
boundary layer. 

The particular configuration which we investigate is the hypersonic flow around an 
aligned wedge of semi-angle 8 .  The inviscid flow in this case is a uniform state either side 
of straight shocks which make an angle 4 = 0 - 8  with the wedge. At the wedge a boundary 
layer is set up and the fluid velocity is reduced to zero inside this layer. We restrict our 
attention to the case when the wedge is insulated though our calculations can readily be 
extended to the isothermal case. 

In order that Tollmien-Schlichting wave disturbances to this flow can be treated in a 
quasi-parallel manner we make the Newtonian approximation and take the distance of the 
shock from the wall to be comparable with the upper deck scale over which Tollmien- 
Schlichting waves governed by triple-deck theory will decay. At the shock we derive 
linearized boundary conditions which the Tollmien-Schlichting wave must satisfy. This 
condition effectively changes the eigenrelation from that discussed in the absence of shocks 
by Smith (1988). We show that the shock has a significant effect on the growth rate of the 
mode corresponding to that discussed by Smith. In addition we show that the presence 
of the shock allows for the existence of much more amplified modes trapped between the 
wedge and the shock. These modes occur at  relatively high frequencies but are unstable 
over very short ranges of frequency. 

Some discussion of inviscid disturbances is also given. At high Mach numbers we give 
the appropriate asymptotic structure of the so-called acoustic modes, and show that they 
will be influenced little by the presence of the shock. The results which we give in the 
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hypersonic limit are in remarkably good agreement with Mack’s (1987) results even at  
relatively low Mach numbers. 

The procedure adopted in the rest of this paper is as follows: in $2 we formulate the 
appropriate sealings for Tollmien-Schlichting instabilities of the hypersonic flow past a 
wedge. In $3 the triple-deck equations for such modes are derived and in $4 the dispersion 
relationship appropriate to the linearized form of these equations is given and discussed. 
In $5 and draw some conclusions about the results of $4 and show how the appropriate 
inviscid stability modes develop in a hypersonic boundary layer on a wedge. Finally in 
an Appendix we derive the shock conditions appropriate to a disturbance with arbitrary 
length scales and use them to find the simplified shock condition for a Tollmien-Schlichting 
wave. 

2. FORMULATION 

The basic flow whose stability we examine is illustrated in Figure 1. For simplicity, 
the wedge is taken to be symmetrically aligned with an oncoming supersonic flow with 
velocity magnitude 6. Shocks of semi-angle u develop from the tip of the wedge (the 
acute angle between the shock and the wedge is 4 = u - e). Quantities upstream of the 
shock are indicated by the subscript u, and quantities in the so-called ‘shock-layer’ between 
the shock and wedge by the subscript s. Cartesian axes are introduced with the 2 and 5 
coordinates aligned and normal with the upper surface of the wedge, and the 2 coordinate 
in the spanwise direction. The corresponding velocity components are = ( G , O ,  &), while 
2, 5, 5, f’ and A are used to denote time, density, pressure, temperature and enthalpy 
respectively. We will assume that the fluid is a perfect gas with ratio of specific heats 7; 

then the upstream Mach number, Mu, is given by 

0 
Mu= -, 

a,  
where the sound speed a, is given by 

(2.lb) 

The inviscid solution for this flow configuration consists of uniform quantities on either 
sides of straight shocks (e.g. see Hayes and Probstein, 1966). Specifically, 

5 3  = 1 + 7 ~ , 2  sin 2 a ( 1 -  E ) ,  

P u  
(2 .2b)  
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' 8  1 
7 = 1 + Z(7 - 1) (1 -  c 2 ) ~ :  sin2 a, (2.2c) 

tan q5 = E tan a, (2 .2d)  

(iill),, = ( 0 1 1 ) ~  = ficosa, (;I),, = -fisina, (i i l) ,  = -cfisina, (2.2e) 

where 011 and GI are the velocity components parallel and perpendicular to  the shock. From 
(2.1) it follows that between the shock and the wedge the fluid velocity has magnitude 

and the local Mach number M, is given by 

M: cos2 a( 1 + c2 tan2 a) 
1 + i(7 - 1) (1 -  c 2 ) ~ :  sin2 a' 

M," = 

or equivalently 

2 M62 Mu = 
cos2a(1+ c2 tan2 a) - i(7 - 1) (1 -  c 2 ) ~ :  sin2 a' 

( 2 . 4 ~ )  

(2.4b) 

Note that (2 .3)  specifies the slip velocity along the wedge, which in viscous flow necessitates 
the existence of a boundary layer. 

Before examining this boundary layer in detail we introduce a non-dimensionalization 
based on the flow quantities between the shock and the wedge, and a length scale L which 
is the distance of interest from the tip of the wedge. Specifically, we introduce coordinates 
LE, velocities fisg, time Lt / f i s ,  pressure ;,fi:p, density ?,p, temperature f',T and enthalpy 
&,h. The governing equations of the flow then become 

( 2 . 5 ~ )  

D u  -vp + -[2V 1 ' ( p d  + O((P' - p ) V  2 * dl, (2.5b) R e  P E  = 

DP 1 (7 - 1)M,2@, 
R e  

- (7 - 1)M;- + -V. (pLVT) + DT 
P- - Dt Dt P r R e  

( 2 . 5 ~ )  

yM:p = pT, h = T,  (2.5d, e )  

where 
1 aui auj 

eij - 2 (- a x j  + G) 
2 
3 

@ = 2 p e  : e + (p' - -p) (V - g)2, - -  

( 2 . 6 ~ )  

(2.6b) 
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p and p' are the shear and bulk viscosities respectively, both of which have been nondi- 
mensionalized by a typical viscosity F8,Pr is the constant Prandtl number, and 

( 2 . 6 ~ )  

is the Reynolds number which we will assume is large. Henceforth, the subscript s will be 
omitted from Ma. We also introduce coordinates (e ,  q, z )  where is measured along the 
shock and q is normal to it. Then I 

I (2.7) 
i 

= xcosq$ + ysinc#, 17 = -xsinq$ + ycosq$. 

For simplicity we will assume (i) that the Prandtl number is unity ( P r  = l), (ii) that 
the shear viscosity is given by a Chapman law p = C T ,  and (iii) that the wedge walls 
are insulating, i.e. (E = 0 on y = 0). At large Reynolds numbers, there is then a simple 
solution to the boundary layer equations in terms of the Dorodnitsyn-Howarth variable 
(e.g. Stewartson 1964), in which the temperature at  the wall, T,, is given by 

BY 

1 
T, = 1 + -(7 2 - 1)M2. (2.8) 

The linear stability of this boundary layer flow has been extensively studied using 
the Orr-Sommerfeld quasi-parallel approximation (e.g. Mack 1969, 1984, 1987). Re- 
cently, Smith (1988) has shown how an asymptotic triple-deck description of lower branch 
Tollmien-Schlichting waves (i.e. 'first mode' waves) can be obtained for wave directions 
sufficiently oblique to be outside the local wave-Mach-cone direction. In the limit of large 
Mach number M ,  Smith (1988) found that the most rapidly growing waves have frequencies 
of order Re+T,-'M-k, and wavelengths in the x and z directions of order 

3 3 
R e - i T z M i  and Re- iT2M-t  (2.9a, b)  

respectively. As is conventional there are lower, middle, and upper decks in the y direction 
with scales 

Re-PTiMt ,  Re-tT, and Re-aT2M-i (2.9c, d ,  e )  
3 9  

respectively. 
One aim of this paper is to see how the growth rates of these oblique Tolllmien- 

Schlichting waves are modified by the presence of a shock. To this end, we attempt to 
scale the problem so that the shock occurs in the upper deck. Thus, since q$ must be small, 
it follows from (2.2d) and (2.9e) that 

3 

q$ - a t a n a  - R e - i T z M - t ,  (2.9f) 
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which from (2.9a) implies an x length scale of order ME tan u. If the complications arising 
from non-parallel effects are to be excluded in order to concentrate on the effects of the 
shock interaction, we require 

 ME^ << 1, (2.104 

i.e. that the wavelength of the Tollmien-Schlichting waves is much less than the distance 
from the apex of the wedge. From (2.2a) and (2.4a), E = O(M-2u-2), so (2.10a) becomes 

uM >> 1. (2.1 Ob) 

However, for Mt > 0 in (2.4b) we require 

(7 - 1 ) M V  < 1. (2.10c) 

Hence, in order to consider the effect of the shock on the instability waves without the 
effects of nonparallelism we are forced to make the 'Newtonian' assumption 

(7 - 1) << 1. (2.10d) 

It follows that when (7 - 1) is not small there is no systematic asymptotic approach to 
this problem which allows the inclusion of shock effects without those associated with 
non-parallelism. Assuming that (7 - 1)M2 is not small, i.e. that there is a significant 
temperature variation in the boundary layer, the interaction condition (2.9) becomes using 

(2.11) 

Before proceeding to asymptotic expansions based on (2.11), it is convenient to consider 
whether there are any further restrictions on the scales of (7 - l), M and u. First, we note 
that a pressure/acoustic wave incident on a shock will produce entropy and shear waves 
as well as generating a reflected wave. The entropy/shear waves have a typical lengthscale 
normal to the shock of magnitude 

where E is a typical wavenumber in the s-direction (see Section 3 below). For simplicity 
we choose to ignore viscous effects in these waves a t  leading order, in which case we require 

EOE-' >> (ERe)-fr,  i.e. from (2.9a) and (2.11) a3M5 << Re. (2.13) 

If it is assumed that the shock has a viscous internal structure, then its thickness is order 
(&uRe)-' (e.g. Moore 1964), and (2.13) then ensures that the entropy/shear waves have a 
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wavelength much larger than the thickness of the shock. It follows from (2.10a) that the 
waves have typical y scales much less than the width of the upper deck. 

Since nonlinear effects are an important part in transition to turbulence, we will select 
a scaling which leads to a nonlinear problem, before linearizing to obtain an analytic 
solution. Following the scalings in Smith (1988), we conclude that a nonlinear lower-deck 
problem is recovered if 

p N Re-iM-4.  (2.14) 

In the upper deck this generates a velocity perturbation normal to the wedge (and normal 
to the shock) of order R e - f M - i .  In order that linearized shock conditions are applicable, 
the undisturbed velocity normal to the shock should be much larger than this, i.e. from 
(2.2e) 

&a >> R e - t M - i ,  i.e. a4M6 << Re. (2.15) 

If this condition is violated, nonlinear entropy waves result, a difficulty which is not tackled 
here. Also, note that if (2.15) is satisfied, then from (2.10b) so is (2.13). 

In order to fix a scaling we will assume that (cf. (2.10~)) 

(7 - 1 ) M V  - 1, (2.16~) 

then (2.11) and the restrictions (2.10b) and (2.14) imply 

If the lower-deck is forced to remain linear then the upper bound on a relaxes to a << 
Re-&. Note also that this scaling implies that the temperature in the undisturbed bound- 
ary is large. For convenience we introduce the scalings 

30 0 3  
(7 - 1) = I 'a - iRe- t ,  M = a i R e x m ,  

then 
1 
2 

T, x -rma-2 >> 1. 

Also, from (2.2d), (2.4b) and (2.7) the position of the shock is given by 

since 
1 

a2M2 * 

&X- 

7 

(2.17a, b) 

(2.17~) 

(2.18) 



3. THE TRIPLE-DECK EQUATIONS 

The scalings leading to these equations for compressible flow have been given elsewhere 
(e.g. Stewartson 1974), hence only a brief outline is given here. In all three decks the z, z 

and t scalings are 

2 = 1 + aiRe-&C$Tim$X-PX, = ~ - T R ~ - $ C $ T ~ X - P ~ - $ Z ,  2 

( 3 4  
4 1 1 3  t = arRe-;C;iT,m?fX-?f.r, 

where X = 0.470 is the Blasius boundary layer skin-friction from the undisturbed middle 
deck solution. 

I 

Lower Deck 

On substituting into (2.5) we obtain at  leading order 

ux + vy + W, = 0,  Py = 0 

The boundary conditions are 

U = V = W = O  o n Y = O ,  

U - , Y + A ( X , Z , T ) ,  W+O asY+oo, 
(3.4) 

where the conditions as Y + oo come from matching with the middle deck, and A is the 
so-called displacement function. 
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I 

The middle deck has the same thickness as the undisturbed boundary layer, which has 
a finite extent in y when T, >> 1 (although an infinite extent in terms of the Dorodnitsyn- 
Howarth variable). Strictly this means that the middle deck should be divided into three 

logarithmically small transition region between the two. 
. regions (i) a boundary-layer region where T >> 1, (ii) a region where T - 1, and (iii) a 

1 1  y = Re-zCzT,y*, 

(3.5) 

p - R;(y*)  + Re-AAR;,,., 

where u;(y) and R l ( y )  are the undisturbed velocity and density profiles respectively (note 
that R; = O(T;l)), and DX = -Pz. 

Essentially the same solution holds in regions (ii) and (iii), although minor rescalings 
are necessary. For example in region (ii) Ri = ui = 1, which leads to simplifications in 
the expressions for u and p in particular. Also in region (iii), ui,,. scales with (logT,); 
as a result of the kink in the velocity profile when T, >> 1. This means that the largest 

velocity perturbations occur in this region. We note that as Q approaches R - h  this may 
mean that the middle deck becomes nonlinear for smaller wave amplitudes than the lower 
deck. 

Upper Deck 

The scalings for the pressure/acoustic waves here are 
i 

(3.6~) 

(3.6b) 

(3.6~) 
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These yield the governing equation for the pressure 

FIXX - Plijij - P l Z Z  = O- 

(3.6d) 

(3.6e) 

(3.6f) 

(3.7) 

One boundary condition comes from matching with the middle deck, i.e. 

(note jjl = P on g = 0), while another boundary condition is to be applied at the shock at 

As is conventional, solutions to (3.7) will be referred to as acoustic waves. 

Shock Conditions 

Wave transmission and reflection across shocks has been studied by Moore (1954), Rib- 
ner (1954), McKenzie and Westphal (1968) and others. In general, whenever an acoustic 
wave is incident on a shock, entropy and vorticity waves are generated in addition to a 
reflected/transmitted acoustic wave. The entropy/vorticity waves have the same frequency 
and the same wavelengths parallel to the shock as the acoustic waves. However, they prop- 
agate in the direction of the mean flow, which means that for the present scalings that their 
wavelengths normal to the shock are very much less than the acoustic wavelength given by 
(3.6a). The scaling (3.6) does not therefore describe them. In the appendix general jump 
conditions a t  a shock are given for incident linearized inviscid waves. The limiting process 
appropriate to the above scalings then yields the boundary condition 

p1 = 0 at  g =  jJs. (3.10) 

In deriving (3.10) from the exact solution to the general linear inviscid problem, we ensure 
that proper account is taken of the short wavelength entropy/vorticity waves. A multiple 
scales approach would be an alternative. 

The entropy/vorticity waves propagate parallel to the direction of the basic flow, which 
is of course parallel to the wedge. It follows that in any situation where the forcing is over a 
distance comparable with the triple-deck scaling (3.la), Le. over a dist,ance which although 
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possibly large does not extend asymptotically far upstream, the entropy/vorticity waves 
will be concentrated in a narrow region close to the shock. Hence they cannot affect the 
solution in the middle and lower decks. 

4. THE DISPERSION RELATION 

Solutions to the nonlinear system (3.3), (3.4), (3.7-10) can in general only be obtained 
numerically. However, analytic solutions can be found if the waves are of small amplitude 
so that the system linearizes. It is then convenient to focus attention on a single mode, so 

we write 

Substituting into (3.3), and linearizing under the assumption that h << 1, we obtain (e.g. 
see Smith, Sykes & Brighton 1977) 

J so 

where 
= (i.)+(Y - h2/a), eo = - i h / a % .  

The solution to (3.7) subject to (3.8) and (3.10) is 

( 4 . 1 ~ )  

(4.16) 

F~ - a2 a i n ( ( a 2 - P ) l ( F - g ) A i  p2 < a2. 
(."-a') ca((a2--a2)  ii,) 

Hence, from (4.1), (4.3) and the fact that p = F1 on B = 0, it follows that 

p2 > a2 

p2 < CY2 

(+a+ 

( d - p z )  4 

tanh((-a2-a2) +si.) 
(4.4) = I  tan((az-a2) b,) 

( ia)+p2 Jr Ai(c)dc 
Ai'(S0) 

Note that for p2 > a2, the dispersion relation for a flow without a shock is recovered in 
the limit g8 4 00 (Smith 1988). 

'We note that this is doubly so if u >> R e - k  since second order viscous effects ensure that the en- 
tropy/vorticity waves decay over a distance much less than the width of the upper deck - although it follows 
from ( 2 . 1 6 ~ )  that the lower deck must be linear for our analysis to be valid for such values of u. 
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The dispersion relation (4.4) admits both growing and decaying modes. Neutral curves 
are given by 

so = -c l i t ,  (p2 - a')$ = c2atp2 tanh((p2 - a2))v8), (4.5) 

where c1 = 2.3 and c2 NN 1.0 (a similar expression exists for p2 < a2). These are plotted 
as solid curves in Figure 2 for three different values of pa. The diagonal dashed curve 
defines the wave-Mach-cone. Above this line the acoustic waves in the upper deck are 
purely sinusoidal, beneath it they either grow or decay in jj. When there is no shock in 
the upper deck, waves described by triple-deck theory are constrained to  lie in the region 
of parameter space below the diagonal (Smith 1988); with shocks present there is no such 
limitation. 

Asymptotic formulae for these neutral curves can be derived that agree well with the 
numerical results: 

3 

) a < < 1 , p > > 1 .  (4 .6~)  

These formulae confirm that there are an infinite number of neutral waves, and that with 
the exception of the subsonic mode, they all asymptote to the line p = a for a, p large. 

The short dashed lines in Figure 2 also represent waves with zero growth rate, but they 
have an infinite frequency and hence our asymptotic analysis breaks down in their vicinity. 
These lines correspond to the points in the (a,@) plane where 

More precisely if we write 
1 1 

2 
(a2 - p 2 ) ~ g 8  = (n + -)T - 6 

for n = 0 ,1 , .  . . where 6 is small and positive, then it follows 

(4.7~46) 

Hence, if p is held k e d ,  then when a is within distance O(6) of a dotted curve, the 
disturbance has frequency O(6-l) and a growth rate O(63) .  The wave grows or decays 
depending on whether it is below or above the dotted curve respectively. 
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It also follows from (4.7b) that the growth rates in the unstable regions above a = p 
increase with n. 00, analysis of (4.4) shows 
that the unstable intervals are of range O(a-%) and that the growth rates in the unstable 
intervals are typically O ( a ) ) .  The frequency in the unstable intervals also increases like ai, 
and so the unstable intervals for n >> 1 correspond to high frequency, short wavelength 
modes with increasingly high growth rates. However, the fact that these modes occur over 
decreasingly short ranges in a as n inceases means that they might not be excited naturally 
in a physically realistic flow situation. 

In fact if we hold ,B fixed and let a 

In Figure 3 we show the dependence of n, and Ri on a for the case pa = 4, p = 1. 

We observe the predicted monotonic increase in the growth rates and the shortening of 
the range of unstable wavenumbers as a increases. Results at other values of va and p are 
similar with the range over which the oscillations in a occur decreasing as either ga or /3 
are increased. 

It is perhaps significant that the modes which reduce to those discussed by Smith (1988) 

when gd -+ 00, i.e. the subsonic modes, have growth rates less than those with p < a. As 
a measure of the growth rate of the subsonic mode we can take its value close to the line 
a = p. In fact in all the cases calculated we found that this mode had its maximum value 
in this neighbourhood. In Figure 4, we show the dependence of ni on pa for different values 
of the spanwise wavenumber ,8 with a = .999/3. We see that Ri increases to a maximum 
and then decreases. Thus, for a given (a,p) close to the line p = a there is an optimum 
value of ga which maximizes the growth rate. In fact it follows from (4.4) that if 

CY' - p2 = A with [AI << 1, YdlAli << 1, 

then close to a = ,f3 

Asymptotic analysis for this expression for small and large vd demonstrates that the growth 
rate has a maximum for intermediate ya, e.g. 

We note however that if fjdlAl) is not small then the above simplification does not hold. 
Further for jjdlAla large the asymptotic behaviour depends on the sign of A. If A < 0, 

then the eigenrelation (4.4) reduces to 
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which is valid for gs >> 1, a, p = O(1) .  As expected this is the eigenrelation of Smith 
(1988). In Figure 5 we show the dependence of R, and Ri on g8 for different values of 
p with CY = 1. For these subsonic modes the growth rates approach constant values as 

gs -+ 00, in agreement with Smith’s (1988) shock-free analysis., Hence subsonic modes of 
fixed wavelength do not feel presence of the shock when gs is large (nor do short-wavelength 
subsonic modes when gs = O(1)).  

However, if gs --+ 00 with A > 0 there is no simplification similar to (4.8) since the 
growth rate oscillates, with the regions of stability and instability becoming increasingly 
thin as gs is increased. 

5 .  CONCLUSIONS 

We have shown that if shock effects are to be included in a Tollmien-Schlichting stability 
analysis of flow past a wedge, then the Newtonian approximation, (7 - 1) << 1, must be 
made if the complicating effects of non-parallelism are to be avoided. With this assumption 
we have seen that the viscous modes have their dispersion relationship crucially altered by 
the presence of a shock at  a distance vs from the wedge scaled on the upper deck thickness. 
In the limit gs 3 00 the modes of Smith (1988) are recovered and the shock has no zeroth 
order effect on the growth rate of these modes. In addition at  large values of gs there is an 
infinite discrete spectrum of disturbances which persist to  the shock. These modes have 
large growth rates at  high frequencies but occur only over small ranges of wavenumber. 
This suggests that the frequency might have to be tuned to produce instability. It is 
therefore an open question as to whether these additional modes play a critical role in the 
transition process in hypersonic flows. We also point out that where our analysis predicts 
infinite frequencies, i.e. close to the dotted curves in Figure 2a,b,c, then our asymptotic 
expansions will fail and a new structure must be set up in order to account for the faster 
disturbance response. This problem has not been investigated in this paper. 

The structure of the eigenfunctions associated with the different modes shown in Fig- 
ure 2 depends on which side of the line a = ,f3 the given mode occurs. If p < Q then 
the disturbances are described by a combination of exponentially growing and decaying 
functions. In any of the limits where the shockless eigenrelation is recovered, e.g. gs + 00 

or p + 00, the exponentially decaying function dominates and the eigenfunctions also 
tend to those of the shockless problem. The modes which have ,O > Q are described by 
trigonometric functions and therefore in any limit involving gs, ,& or Q they are oscillatory 
and O(1)  between the wedge and the shock. This class of the mode is perhaps best thought 
of as sound waves trapped between the wedge and shock and amplified by the boundary 
layer. 
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So far we have only discussed the effect of the shock on viscous modes of instability yet it 
is well-known that compressible shear flows can also support unstable inviscid disturbances. 
The inviscid modes of instability for a compressible boundary layer have wavelengths 
comparable with the boundary layer thickness so we consider perturbations to the flow 
described in $2 but with wavelengths scaled on the main deck thickness. In order to be 
consistent with previous investigations we drop the re-scaling (3.1) introduced in order to 
simplify the triple-deck analysis of $3. 

Following for example Mack (1987), we scale wavelengths on the main deck thickness 
and the wavespeed on the free-stream speed. The pressure perturbation P for an inviscid 
mode then satisfies the compressible Rayleigh equation 

aya - C)2M2 

(a2 + P2)T 
p’f - -P’ + = - P I  - (a + P 2 ) ( l -  2TP ’i’ 2 )P = 0. 

T - u - c  

Here a dash denotes a derivative with respect to  boundary layer variable y*, whilst the 
basic velocity field ii and temperature T for an insulated wall are given by 

= f‘(q), T = 1 + -M2(1 7 - 1  - fr2), 2 
(5.2a, 6 )  

where f is the Blasius function and q is the Dorodnitsy-Howarth variable defined by 

( 5 . 2 ~ )  

The quantities a and P are downstream and spanwise wavenumbers, whilst c is the 
wavespeed. We confine our attention to modes which satisfy 

P’ = o on y* = 0, P + O as y* + 00, (5.3a, 6 )  

which together with (5.1) specify an eigenrelation c = c ( a ,  0) .  The point at issue here is 

whether the decay of P when y -+ 00 is sufficiently rapid to mean that the shock located 
outside the boundary layer has a negligible effect on the disturbance. In order to  see 
whether this is the case we discuss the structure of (5.1) in the limit M + 00. 

Since this work was completed we learned of an independent investigation of (5.1) for 
M >> 1 by S. N. Brown and F. T. Smith. They have concentrated on the so-called vorticity 
mode (Mack, 1987), while we will study the acoustic modes. We restrict our discussion 
of (5.1) to the minimum which explains the large M structure of P and shows that in 
the wedge problem considered in this paper the shock generally has only an exponentially 
small effect on the eigenrelation. Further, we concentrate on the generalized inflection 

point neutral modes of (5.1) which have p = 0. The discussion we give can be extended 

to unstable two and three-dimensional modes, although an extra critical-layer region then 
needs to be included. 
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- 
The generalized inflection point occurs where uUeu.T = vuy.Fu., and if we write 

where B comes from the large r] asymptotic form of f 

(5 .54  

~ 

then we can show that it occurs at  

The wavespeed is then given by ?5; evaluated at  the inflection point so that (5.1) is not 
singular there. Thus, we have 

I 

A 4 2  

Next we anticipate the change of scale of the boundary layer for M >> 1 and write 

C Y =  -+... . 

c 
c = 1 - - +  ..., (5.56) 

1 
1-1 

with Z = -. 

A 
M2 

I It follows that the zeroth order approximation to (5.1) for 0(1) values of r] is 

P = 0. (5.6) 
d2P 2f" dP A2(7 - 1)2(1 - f')' ----- 
dv2 f ' -  1 dq 4 

For large values of r ]  it is found that the solutions of (5.6) are such that 

where D and E are arbitrary constants, one of which can be fixed as a normalisation 
condition. Anticipating the result we choose D = 1 without loss of generality. E is then 
determined by investigating the solution of (5.1) in the region where ? = 0(1), and also 
in the region above this logarithmically thin layer. In passing it is of interest to note that 
this layer also controls the Gbrtler vortex mechanism in hypersonic boundary layers (Hall, 
1988). 

I For ? = O(1) we seek a solution of (5.1) by writing 

P = F ( ? ) +  ..., 

l and after some manipulation we find that F satisfies 

- d2p - d $  2 d p 2  d$ 
dp2 dY Z-dpdp 

-- Y 2 - + Y v +  - 0, ( 5 . 8 ~ )  

~ 
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which is to be solved in the range 0 < F < 00. The solution of this equation is 

e d2F2 p = D( - - 22dF + Z2 log ?) + E, 
2 

(5.8b) 

where 5 and are constants. This solution is to be matched with (5.7) when P 4 00 and 
a solution of (5.1) valid for q - B - 4- >> (d-))-l. The former condition 
yields 

+ .... - 242-&jW 
d2M4 

D =  

Above this logarithmically thin region there is an outer region with the scaled coordinate 
T = Md2q (note from (5.2~)  that y* = 0(1) in this region). The solution in this region is 
P - Eexp(-AT) = Eexp(-aq). Matching this solution to the logarithmic term in (5.8b) - 
for Y small we find that 

- 4Z2 log M 2  E - -  
ad2M2 ' 

and matching to the constant yields 
i? - E. 

Note that this means that the constant term dominates the ?-dependent part of the 
complementary function in (5.8b). However, on substituting (5.8b) into (5.1) we confirm 
that (5.8a) is still the leading order equation for k'(F). An alternative way to see this is 
to work with the equation for the velocity fluctuation normal to the wall, rather than that 
for the pressure fluctuation. 

Finally, matching back to the lower layer adjacent to the wall we conclude that 

E - E - E < <  1. 

Therefore, A is determined by the eigenvalue problem specified by (5.6) together with 

P ' =  0 on q = 0, P -, 0 as q -, 00. (5.9) 

This problem was solved numerically to yield the sequence of eigenvalues A = 4.81, 13.84, 
23.34, 33.03, 42.82, 52.67, 62.55, 72.45, 82.37, 92.29, ... . 

In Figure 6 we have shown a comparison of our one term asymptotic form for Q with 
the values given by Mack (1987). The agreement is satisfactory except our analysis needs 
modification to explain the 'kinks' in the eigencurves found by Mack (but see also the work 
of S.N. Brown and F.T. Smith, private communication). The eigenfunctions associated 
with the above set of eigenvalues are shown in Figure 7. Finally, we note that the higher 
order modes of the eigenvalue problem can be derived by applying the WKB method to 

(5.6). In fact we anticipate that the WKB desription of the modes discussed above coupled 
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to the vorticity mode description of Brown and Smith could be used to explain the kinks 
in the neutral curves given by Mack. Thus we expect that these eigenvalues are split apart 
by an exponentially small amount in the manner discussed by for example DiPrima and 
Hall (1984) for the Taylor problem. 

The main result of the above analysis is that the high Mach number structure of the 
inviscid modes does not lead to a reduced rate of decay at  infinity. Hence the shock cannot 
have anything other than an exponentially small effect on them, at least until it is within 
an order one distance of the boundary-layer. Then the steady flow changes and the effect 
of the shock is felt within the outer region. We conclude that the viscous modes are those 
which are most likely to be influenced by the presence of shocks in high Mach number 
flows. 
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APPENDIX: SHOCK CONDITIONS 

In this appendix we give the conditions that must hold at the shock - see Moore (1954), 

For a shock given by q = f (t ,  z ,  t), the jump conditions across a shock are (e.g. Majda 
Ribner (1954) and McKenzie and Westphal (1968) for similar derivations. 

1983) 
%[PI + 3 P U I  - [PVI  + 3 P W l  = 0, 

% [ P e l  + g[.(P& + PI1 - [ 4 P &  + 41 + g [ w ( P E  + P)] = 0, 

where & = & $- i (u2  + v2 + w 2 ) .  The basic solution specific by (2 .2 )  can be shown to 
satisfy these jump conditions with f = 0. 

We assume that there is a small disturbance beneath the shock and write 

( P ,  u 9 v ,  w , P, 8) = (R, u, v, w, P, E )  + ( T ,  e, G,G, 5,;). (A.2a) 

For our flow any waves above the shock propagate towards the shock. Hence the distur- 
bance cannot extend above the shock, where we write 

( p , u , v , w , p , & )  = (a,a,v,w,F,q. (A.2b) 

The linearized shock conditions are obtained by substituting (A.2) into (A.l) and neglecting 
all nonlinear disturbance terms. The position of the shock will vary by only a small amount 
from q = 0, so we write f = 7. Also, since the undisturbed flow is a constant above and 
below the shock, to a consistent approximation the jump conditions can be evaluated at  
r)  = 0 instead of r)  = j. Finally, we assume that the linear disturbance can be expressed 
as a superposition of Fourier modes, so that it is sufficient to study a single mode, i.e. we 
assume 

o( exp(i(at  + Pz - Ot) ) ,  etc.. (A.3) 

Note that here a, P and 0 are not the scaled quantites of section 4. After a little manip- 
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dation it follows from (A.l) that 

I -i(n - aU)(E-  R ) j  + R5 + V ?  = 0,  

icY(F- P)j+ RVG = 0,  

2RVG + V2? + = 0, 

RVG + ip(P-  P ) ]  = 0, 
- -i(n - aU)(RE - R E ) j  + iaU(P- P ) j +  (RE + P)C + VRZ, + VE? + vfi = 0. 

] and F can be eliminated from the above to obtain 

~ - ~ v ) ( R E - R E ) R v  - u = 0, [7-1 A P  + hR(V2 - U’)] G +  [&V - $15. I 
f f ( P - P )  

where for our basic state and nondimensionalization 

1 1 - 7 R = l ,  P=- U =  V = & v ,  v = -  yM2 ’ 

- E: E(? - 1)(1 - € 7 7 2  

w2 27(1+  € 2 7 2 )  

(1 + € 2 7 2 )  + ’ (1 + € 2 7 2 )  +’ 

p=-- , 7 = tana.  

Beneath the shock the linear waves have solutions proportional to e i W i n t  , where IC = 
(a,v,p) and - ( = ( ( ,r] ,z) .  The solutions for the different types of wave have the following 
forms: 
Acoustic: 

(n - U.k)’ = k2a2 where U = (U, V,  0 ) ,  u2 = 2 R 

Vorticity: 

~2 - u.h= 0, 

p = t = O .  

( i i , i j ,G)  = ( i i , , -~-~(a i i ,  + ,0ios),G8)eik.i-int 

. “ I  ( A 4  

We denote the pressure amplitudes of the incident and reflected acoustic waves by pl and 
p2  respectively, and their corresponding r]-wavenumbers by v1 and 24 respectively. Then 
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substituting (A.68)  into (A.5), and using the nondimensional forms of (2 .2 ) ,  we obtain 
after some manipulation 

where 

-(n - aU)((n - a U ) 2 ( 1  + e 2 7 2 ) ( 3  - 7 + (7 + 1)E) - (a2 + P 2 ) e T 2 ( ( 7  + 1 )  - (7 + 5 ) 4 )  
(n - aU)2(1+  e 2 7 9  + (a2 + P 2 ) E P  

Ki = 9 

(7 + 1 ) ( 1  - &)ET 
(1 + & T ) i  - K2 = 

On substituting the scalings (2 .16)  into the above, we find that a t  leading order IK1I >> 
lK21, aU >> In - VIVI, and hence 

P l  + P2 = 0, 

i.e. condition (3 .10) .  Expressions for other quantities can be obtained similarly. For 
u >> R e - h  the 6,G and F perturbations are dominated by the entropy/shear wave 
contributions; in particular for our scalings 

where 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2a. 

Figure 2b. 

Figure 2c. 

Figure 3a. 

Figure 3b. 

Figure 4a. 

Figure 4b. 

Figure 5.  

Figure 6. 

Figure 7a. 

Figure 7b. 

Figure 7c. 

Figure 7d. 

Figure 7e. 

Figure 7f. 

Figure 7g. 

Figure 7h. 

The geometry of the wedge and shock for a high Mach number flow. 

The neutral curve a = a(p)  for 5, = 1. 

The neutral curve a = a!@) for v6 = 4. 

The neutral curve a! = a!(@) for y6 = 16. 

The growth rate s2i as a function of a for y, = 4,p = 1. 

The wavespeed 0, as a function of a for g6 = 4,p  = 1. 

n, and ni as functions of g, for /3 = 1, CY = 0.999p. 

n, and nj as functions of P, for p = 2, a! = 0.999p. 

The growth rates as a function of g, for a! = 1, p = 2,3,4. 

The neutral curves for the generalized inflection point modes with p = 0. 
Mack’s (1987) results. High M asymptotic prediction. 

The eigenfunction P(y)  for A = 4.81. 

The eigenfunction P(y) for A = 13.84. 

The eigenfunction P(y)  for A = 23.34. 

The eigenfunction P(y)  for A = 33.03. 

The eigenfunction P(y) for A = 42.82. 

The eigenfunction P(y)  for A = 52.67. 

The eigenfunction P(y) for A = 62.55. 

The eigenfunction P(y)  for A = 72.45. 
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